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Results 

LLNL Climate SFA Review 

•  Subtropical low cloud feedbacks are a primary source of climate change uncertainty (IPCC AR4) 
•  Previous studies (Bony et al, Clim Dyn 2004, Medeiros et al, J. Clim. 2008) suggest that low cloud 

problems in GCMs stem from cloud parameterizations rather than large-scale circulation 
Idea: Can a limited-area model forced by CMIP3 large-scale forcings reduce inter-model spread 
and improve understanding of low cloud feedback, thereby reducing climate-change uncertainty?  

Methodology 

Validation 

Large-scale conditions from all available CMIP3 GCMs are used as boundary conditions for an 
atmospheric mixed-layer model (MLM) extended to predict cloud fraction (see Fig 1).  

Why a MLM? 
• Efficient (can do climate-length 

runs with many GCMs) 
• Physically-based 
• Easy to interpret 
 

Simulations Used: 
20C3M years 1980-2000 & 
scenario A1B years 2080-2100 

 

GCM→MLM coupling details: 
• Using BL depth estimation to ensure upper boundary data is in free troposphere 
• Computing subsidence assuming constant divergence (using 10m winds) 
• Predicting T and q gradients from ∇SST and ∇qs(SST); assuming v�∇zi=0.49mm/day 

ISCCP  (Obs)                             ERA-40 Forced MLM Results 

Fig. 2: Observed and ERA-40 reanalysis-forced MLM Sept-Nov. tropical low cloud distribution (adapted from Zhang et al. J. Clim. 2009) 

Low Cloud Fraction (%) 

• Fig. 2 shows that the MLM reproduces the subtropical stratus areas of Klein & 
Hartmann (J. Clim. 1993) 

• Near-coast & equatorial cloud are overpredicted in Fig. 2 (since sharp ∇SST 
violates our equilibrium assumption) 

Fig. 3: r2 between ISCCP and 
MLM regional-average data when 
output data (and obs) are 
averaged as  indicated. 

• Skill is poor on daily scales but improves rapidly at longer timescales (Fig. 3). 
Reasons: 
1.  high-frequency data is subject to random errors  
2.  equilibrium is a less appropriate assumption at short timescales 

• Canary region is usually decoupled → unpredictable 

Fig. 4: Current-climate low cloud fraction vs estimated inversion strength (EIS). Each point represents a unique 
(model, region, season) combination. Thick blue lines = observed slope from Wood & Bretherton (2006), thick 
red lines are regressions across models and thin red lines are for individual models.  

•  EIS is the best predictor of MLM cloud 
variations in climate projections as well as 
current climate (Fig. 6) 

•  MLM cloud increases in the future because 
of robust GCM EIS increases (Tab. 1) 
-  EIS increase comes from increased 

warm/cold pool ΔSST and enhanced 
land/ocean T contrast (Fig. 7) 

 
1.  The analyzed CMIP3 models displayed poor sensitivity to EIS variations 
- due to cloud physics parameterizations - MLMs driven by these GCMs did get the proper sensitivity 

2.  The MLM did not reduce inter-model spread – large variations in ΔEIS across GCMs disperse the MLM 
predictions, suggesting that improved cloud physics is insufficient to reduce low cloud uncertainty 

3.  In general, the MLM predicts an increase in low clouds (the opposite response of most GCMs) 
- this increase is due to robust predictions of EIS increase across CMIP3 models. These increases are 

due to changes in SST patterns as well as future increases in land/ocean temperature contrast 

• Fig. 4 shows that CMIP3 models are inadequately 
sensitive to EIS change 
-  This is a problem with cloud physics – the MLM 

responds appropriately when driven by GCM 
large-scale conditions 

GCMs MLM driven by GCMs 

Figure 5: Scatter plot of GCM (left panel) and MLM (right panel) low cloud fraction

versus EIS for each region, season, and model. Best-fit slopes from individual models are

indicated by thin black lines, ensemble-average and observations are indicated by thick

lines, and single-model r2 values are included in the legend.
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Fig. 5: Low cloud response to climate change as predicted from MLMs and from GCMs 
stratified by region and model. Direct CO2 effect was included by reducing cloud-top 
radiative cooling by 4 W/m2. Smaller points show results when this effect was omitted. 

Figure 7: MLM cloud fraction response to warming versus that of the parent GCMs.

Cloud changes are normalized by global-average air surface temperature change. Runs

ignoring the direct CO2 effect are included with smaller markers. Thin black horizontal

and vertical lines delineate the transitions between cloud increase and decrease.
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div (10-7 s-1) EIS (K) dθ+/dz (K km-1) SST (K) T+ (K) RH+ (%) surf wspd (m s-1) 
Namibia -1.0 1.0 0.8 2.3 2.3 -2.3 -0.1 
Peru -2.0 1.1 0.8 2.2 2.3 -0.6 0.1 
California -0.3 0.7 0.6 2.4 2.8 -1.2 -0.2 
Canary -0.4 1.1 0.7 2.3 2.8 -3.5 -0.1 
Australia -1.0 0.9 0.7 2.0 2.5 -2.9 -0.1 

Conclusions 
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Fig. 6: Correlation between MLM low cloudiness and forcing variables for timescales listed on right. Within each box, 
correlations are further by region. In the bottom row, correlations are further divided by model.   

Fig. 7: Pattern of EIS and its components’ response to climate change averaged over available CMIP3 + CMIP5 models after each model was normalized by global-mean surface T change. Impact of lapse-rate changes were neglibible. 

In Fig 5 we see: 
•  MLM runs generally predict increased low cloud in the 

future, GCMs predict decreased low cloud 
•  The MLM does not reduce inter-model spread 
-  Improving cloud physics is a necessary but not 

sufficient condition for reducing inter-model spread! 

climate-
change Δcld 
across models 
current-climate 
cld amt across 
models 
current-climate 
dcld/dforcing 
within models 

Table 1: Climate change signal in large-scale forcings used to drive the MLM. Numbers are in bold where 8/10 models have changes of the same sign. 

ΔEIS/Global Mean ΔTsurf Δθ700/Global Mean ΔTsurf Δθsurf/Global Mean ΔTsurf 


